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Relativistic EÃB acceleration
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The relativistic motion of charged particles is analyzed theoretically in electric and magnetic fields that are
constant, uniform, and mutually perpendicular. In the relativistic regime where the magnitude of the electric
field E is equal to or greater than that of the magnetic fieldB, i.e., uEu>uBu, the particle is effectively
accelerated and gains energy indefinitely. This is quite different from theE3B drift motion in the nonrelativ-
istic regime.
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I. INTRODUCTION

Understanding the motion of charged particles in elec
and magnetic fields is basic to plasma research@1#. In par-
ticular, theE3B drift motion is well known as a popula
drift motion. However, it is difficult to analyze the drift mo
tion in the relativistic regime because of the strong non
earity of the Lorentz factor.

Landau and Lifshitz@2# have calculated the drift motion
in the relativistic regime whereuEu5uBu. Some of their re-
sults, presented in parametric form, are focused on a sp
case.

Jackson@3# has predicted that ifuEu,uBu, theE3B drift
motion in the nonrelativistic regime is significant; on th
other hand, when the conditionuEu>uBu is satisfied, the par-
ticle acceleration becomes dominant rather than the drift
tion. In a special case whereuEu5uBu, this effective accel-
eration has already been used as a velocity spectromete@4#.
However, this is only a part of theE3B acceleration. Spe
cific calculations and explanations of the acceleration mec
nism have not been performed.

Therefore, we have derived here exact solutions from
relativistic equation of motion and investigate the relativis
E3B acceleration in detail.

II. BASIC EQUATIONS

The relativistic equation of motions of a particle wi
massm and chargeq in electric and magnetic fields is give
by

m
dgv

dt
5qE1

q

c
v3B, ~1!

where g[1/A12(v/c)2 is the Lorentz factor andc is the
velocity of light. We choose the uniform fields

E5~E0,0,0!, B5~0,0,2B0!, ~2!

and normalize physical quantities in the form:b[v/c, t

[Vt, Ẽ[E0 /B0, whereV[qB0 /mc is the cyclotron fre-
quency. Thus, the equation can be rewritten as
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d~gbx!/dt5Ẽ2by , ~3!

d~gby!/dt5bx , ~4!

d~gbz!/dt50, ~5!

and the other new equation corresponding to the ene
equation is derived as

dg/dt5Ẽbx . ~6!

III. PARTICLE TRAJECTORIES

Introducing the following relations:

dj/dt5bx , dh/dt5by , dz/dt5bz ,

j2j0[X, h2h0[Y, z2z0[Z,

it is possible to integrate Eqs.~3!–~6! as follows:

gbx5g0bx02~h2h0!1Ẽt[G, ~7!

gby5g0by01~j2j0![d1X, ~8!

gbz5g0bz0[k, ~9!

g5g01Ẽ~j2j0![g01ẼX. ~10!

Substituting Eqs.~7!–~10! into the modified Lorentz fac-
tor asg2215(gbx)

21(gby)
21(gbz)

2, we obtain

G25~Ẽ221!X212g0~Ẽ2by0!X1g0
2bx0

2 , ~11!

and redefine in a simpler form:

G5AaX21bX1c[ f 1~X!,

whereG[g0bx02Y1Ẽt as shown in Eq.~7! and

a[Ẽ221, b[2g0~Ẽ2by0!, c[g0
2bx0

2 .

From Eqs.~7!–~9!, we can derive the differential equation

gby

gbx
5

dh

dj
5

dY

dX
5

X1d

G
[

X1d

f 1~X!
, ~12!
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gbz

gbx
5

dz

dj
5

dZ

dX
5

k

G
[

k

f 1~X!
, ~13!

and obtain the following from Eqs.~7! and ~10!:

g

gbx
5

dt

dX
5

ẼX1g0

G
[

ẼX1g0

f 1~X!
. ~14!

These equations have exact solutions as presented in the
pendix.

When the conditionaÞ0 is satisfied, then the exact solu
tions are described in the forms

Y5
1

a
@ f 1~X!2 f 0#1S d2

b

2aD @ I ~X!2I 0#, ~15!

Z5k@ I ~X!2I 0#, ~16!

t5
Ẽ

a
@ f 1~X!2 f 0#1S g02

bẼ

2a
D @ I ~X!2I 0#, ~17!

where f 0 and I 0 are the initial values atX50. Combining
these three equations leads to another new relation

bz0t5Ẽbz0Y1~12Ẽby0!Z. ~18!

First, let us consider the case wherea,0, i.e.,E0,B0. In
this case the particle drifts in theE3B direction with gyra-
tion, and its trajectory is described by Eq.~11! as

~Y2g0bx02Ẽt!22aS X1
b

2aD 2

5c2
b2

4a
. ~19!

This implies that the trajectory is elliptical in theXY
plane because ofa,0; in addition, its guiding center move
along theY direction with a constant velocity, namely th
drift velocity Vg5cE0 /B0. In the limit of Ẽ50, the trajec-
tory becomes a circle or cyclotronlike motion as describ
below:

~Y2g0bx0!21~X1g0by0!25g0
2~bx0

2 1by0
2 !, ~20!

and the trajectory in theZ direction obeys the relationZ
5bz0t derived from Eq.~18!.

If a.0 or E0.B0, then the electric force becomes stro
ger than the Lorentz force. Therefore, the particle can ne
gyrate and moves linearly along the trajectories

Y'
X

Aa
5

X

AẼ221
, ~21!

Z'
k

Aa
lnu4aXu5

g0bz0

AẼ221
lnu4~Ẽ221!Xu. ~22!

When a50 or E05B0 is satisfied, the trajectory of th
particle follows a slow arc described by the other exact
lutions:
03740
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Y5
2X

3b
f 2~X!1

6bd24c

3b2
@ f 2~X!2 f 0#, ~23!

Z5
2k

b
@ f 2~X!2 f 0#, ~24!

where f 2(X)5AbX1c. As time goes onX grows larger,
thus approximate forms of the trajectories can be shown

Y'
2X3/2

3Ab
5

A2X3/2

3Ag0~12by0!
, ~25!

Z'
2kX1/2

Ab
5bz0S 2g0X

12by0
D 1/2

. ~26!

Some typical trajectories are shown in Fig. 1.

IV. ENERGY GAIN

To obtain the net energy gain of the particle, we can
write Eq. ~6! as follows:

g
dg

dt
5

1

2

dg2

dt
5Ẽgb,x , ~27!

and further by the use of Eqs.~3!, ~8!, and ~10!, the above
equation can be modified in the form

1

2

d2g2

dt2
5a1

g0~12Ẽby0!

g
[a1

e

g
. ~28!

Replacing the variableg2 by G and performing the energy
integral, we can obtain

FIG. 1. Particle trajectories projected on theXY plane.a,0,

trajectory of theE3B drift described by Eq.~19! where Ẽ50.1;
a50, slow curved trajectory described by Eq.~23! or Eq. ~25!

whereẼ51.0; a.0, linear trajectory described by Eq.~15! or Eq.

~21! whereẼ53.0. Initial values are given as (X0 ,Y0)5(0,0) and
(bx0 ,by0 ,bz0)5(0.3,0.4,0.1).
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1

4 S dG

dt D 2

5aG12eAG1h, ~29!

whereh is the initial value given by

h[2aG022eAG01
1

4 S dG

dt D
t50

2

52ag0
222eg01~Ẽg0bx0!2. ~30!

The last term on the right hand side is derived from Eq.~27!.
Furthermore, Eq.~29! can be rewritten as

dt

dg
5

g

f 3~g!
, ~31!

where f 3(g)5Aag212eg1h and its exact solution is als
given in the form

t5
f 3~g!2 f 3~g0!

a
2

e@ I ~g!2I ~g0!#

a
. ~32!

Whena.0, the first two terms on the right hand side of t
above equation are important, while whena,0, the last two
terms are dominant.

If the conditiona50 is satisfied, then

t5
g f 4~g!2g0f 4~g0!

3e
2

h@ f 4~g!2 f 4~g0!#

3e2
, ~33!

where f 4(g)5A2eg1h.
As shown in Eq.~6!, if j increases linearly, theng must

also increase because ofDg5ẼDj. Wheng@1 anda.0 is
assumed, we can obtain

g'~Ẽ221!1/2t. ~34!

On the other hand, ifa50 is satisfied, the equation can b
derived as

g'@9g0~12by0!/2#1/3t2/3. ~35!

In both cases, net~energy! gains of the particles increas
indefinitely as time elapses.

Time evolutions of some typical~energy! gains are de-
picted in Fig. 2.

V. DISCUSSIONS

With an appropriate Lorentz transformation, the equat
of motion can be rewritten simply@3,5#. Let us consider the
case where the conditionE0,B0 is satisfied. The particle
that stays in the systemK8 moving with the drift velocity
Vg5(E0/B0)c relative to the original frameK experiences
the electric and magnetic fields:

E850, B85
B0

gg
5AB0

22E0
2, ~36!
03740
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where gg[1/A12(Vg /c)2. This implies that the particle
gyrates in the uniform magnetic field in the systemK8.

If E0.B0 is satisfied, the velocityVg will be greater than
the velocity of light. Then, we must introduce the other v
locity described byVf5cE03B0/E0

2. According to the trans-
formation, the fields acting on the particle in the systemK9
moving with the velocityVf are given by

E95
E0

g f
5AE0

22B0
2, B950, ~37!

where g f[1/A12(Vf /c)2. The particle only experience
the purely electrostatic field and is accelerated indefinit
with a hyperbolic trajectory in the systemK9.

The motion of the particle in the moving frames can
derived more easily than for the original frame. Neverthele
as calculated in previous sections, it is in the original fra
where we can observe the trajectories and the energy g
Accordingly, the inverse Lorentz transformation from th
systemK8 or K9 to the original frameK is needed and lead
to the same result as that in the original frame.

An alternative an acceleration mechanism@magnetic trap-
ping acceleration~MTA !# @5,6# has been presented to a
count for ultrahigh energy cosmic rays, in which the ene
gain of the particle becomes indefinite. TheE3B accelera-
tion also has as a feature of indefinite acceleration. If
condition E0>B0 would be satisfied anywhere in the un
verse, this mechanism might be a candidate for high ene
particle generations.

VI. CONCLUSION

The relativistic motions are determined exactly in mu
ally perpendicular electric and magnetic fields. When
conditiona>0 or E0>B0 is satisfied, the particle can neve
gyrate anymore and is accelerated indefinitely.

FIG. 2. Time evolution of particle~energy! gains.a,0, peri-

odic gain due to theE3B drift described by Eq.~32! where Ẽ
50.5; a50, slow curved increment described by Eq.~35! where

Ẽ51.0; a.0, linear gain described by Eq.~34! where Ẽ53.0.
Initial values are the same as those given in Fig. 1.
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This implies that the drift velocityVg has a physical
meaning only ifVg /c5E0 /B0,1 is satisfied. This is quite
different from the drift motion in the nonrelativistic regime
In the limit of Ẽ2!1 andg'1, the trajectories in the rela
tivistic motions coincide with the nonrelativistic ones.
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APPENDIX

Mathematical formulas of indefinite integrals are pr
sented below:

E px1q

Aax21bx1c
dx5

p

a
Aax21bx1c1S q2

bp

2aD I ~x!,

~A1!
d

f

03740
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where the functionI (x) must be classfied into the following
two functions. Fora.0,

I ~x!5
1

Aa
lnu2ax1b12Aa~ax21bx1c!u; ~A2!

and fora,0 andb224ac.0,

I ~x!52
1

Auau
arcsinS 2ax1b

Ab224ac
D . ~A3!

If a50, then the above formula is reduced in the followin

E px1q

Abx1c
dx5

2p~bx22c!16bq

3b2
Abx1c. ~A4!
m.
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